
1 Introduction
To be successful in everyday behavior, locomotion must be coordinated with a complex,
dynamic environment. Consider the children's game of tag, in which a player must steer
toward stationary goals, intercept moving targets, avoid stationary and moving obstacles,
and evade pursuers. Similar challenges are faced by animals in the wild, humans walk-
ing in public spaces, and mobile robots in realistic environments. Here, we examine
human interception of a moving target, as part of a larger research program of inves-
tigating the elementary locomotor behaviors (Fajen and Warren 2003; Warren and
Fajen, in press). A prototypical example of interception is a predator chasing its fleeing
prey, and such behavior has become an integral part of sports like American football,
where defensemen chase and tackle the ball carrier in the open field. In the present
study, we examine the behavioral strategy that people use to walk to a moving target,
and the visual information used to guide this strategy. In a companion article, we
describe a dynamical model of interception behavior based upon a previous model of
steering and obstacle avoidance (Warren and Fajen, submitted).

We approached the moving-target problem by first identifying idealized behavioral
strategies and informational variables that might be used to perform this task, and
then testing them experimentally. We use the term strategy to refer to a particular
behavior pattern that would lead to successful performance. Each strategy could be
controlled by one or more types of information. Let us consider two simple strategies
and four types of information that could guide locomotion to a moving target.
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1.1 Strategies
Suppose an agent locomotes with velocity v and a target moves with velocity u. Let
us define the target-heading angle b as the visual angle between the agent's current
direction of locomotion or heading and the direction of the goal or target, which is a
distance dg from the agent (figure 1a).

1.1.1 Pursuit. One possible strategy is to pursue the target by simply walking toward it at
each moment, such that the target-heading angle is zero (b � 0) (see figure 1b). In addition,
the agent's speed must be great enough for the distance to the goal dg to decrease. This
is the way in which humans typically walk to a stationary goal (Fajen and Warren 2003).
With a moving target, however, the agent would have to turn continually to keep the
heading direction aligned with the target, yielding a curved path of locomotion.

1.1.2 Interception. An alternative strategy is to intercept the target by walking ahead
of it, such that the target-heading angle is greater than zero (b 4 0). One version of
this strategy familiar to sailors and pilots is to keep the target at a constant bearing
angle, which corresponds to a collision course (if the agent is facing in the direction
of travel). More generally, maintaining a constant positive target-heading angle and a
straight path will lead to a successful interception,(1) on the assumption that the target
is traveling at a constant velocity.
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Figure 1. Strategies for walking to a moving target. (a) Basic variables; (b) pursuit strategy;
(c) interception strategy.

(1)Merely holding the target-heading angle constant can also yield spiral paths about the target
(cf Lee 1998), hence the added straight-path constraint.
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As can be seen in figure 1c, this solution is equivalent to matching the target's
transverse speed (vt � ut ) and simultaneously walking toward it (vr 4 ur , where the
subscript r indicates the radial speed along the line of sight) so that distance dg
decreases (see Appendix). This yields a straight path with a constant interception angle,
given by

b̂ � arcsin
ut
kvk

� �
, (1)

where kvk is the agent's speed. Note that the agent has two control variables, the
direction and speed of travel; adopting a different walking speed produces a different
interception angle. It is important to point out that the agent need not explicitly match
ut or compute b̂, for nulling the change in b and trying to walk a straight path
will yield a successful interception at the constant angle b̂. Even if the target velocity
changes, such a continuous control strategy will be successful as long as kvk4 ut ,
although the resulting path may be curved.

Such a constant-interception-angle strategy was previously proposed for outfielders
running to catch a fly ball, to control their transverse speed (Chapman 1968; Michaels
and Oudejans 1992), and for pedestrians trying to avoid collisions (Cutting et al 1995).
Some empirical evidence seems to favor this strategy. Lanchester and Mark (1975) found
that teleost fish often track pieces of food using an interception strategy. Recently,
Lenoir et al (1999a) reported that participants riding a tricycle along a track to inter-
cept a moving target adjust their speed to maintain a constant target-heading angle.
A similar result has also been found for participants walking on a variable-speed tread-
mill to intercept a virtual ball (Chardenon et al 2002). However, in these cases the
participant was restricted to a straight path and could only vary speed, so it is not
clear whether the same strategy would be used in the open field when both direction
and speed can be controlled.

In an open-field setting, Rushton et al (1998) reported that participants actually
did not anticipate the future position of a moving target but walked in its current
visual direction, consistent with a pursuit strategy. However, target speed was slow
(roughly 1 deg sÿ1 at the beginning of a trial) and participants were wearing displacing
prisms at the time, so this may not reflect behavior with faster targets.

1.2 Information
To visually guide either one of these strategies, an observer could use any of the
following types of information (refer to figure 2).

1.2.1 Egocentric direction. Let us define the locomotor axis as a walking observer's
direction of travel, specified proprioceptively (Telford et al 1995); this is distinct from
the body's antero-posterior (A-P) axis, because one can adopt a c̀rabbing' gait. The
egocentric direction of a target can then be defined as the visual direction of the target
with respect to the locomotor axis,(2) which corresponds to the target-heading angle.
In a pursuit strategy based on egocentric direction the observer could simply align
the felt locomotor axis with the target, bringing b to zero (see figure 2a). An intercep-
tion strategy based on egocentric direction could maintain a constant positive angle
between the felt locomotor axis and the target (see figure 2d). If the observer is facing
in the direction of travel (so the A-P axis is aligned with the locomotor axis), this is
equivalent to maintaining the target at a constant bearing angle, or at a constant angle
of gaze. Both strategies also require that the perceived distance of the target must
decrease, perhaps based on local optical expansion or binocular distance information.

(2) If the observer is facing in the direction of travel, then the locomotor axis and A-P axis are
aligned and the egocentric direction of the target is equivalent to its bearing.
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1.2.2 Global optic flow.Gibson (1950, 1958/1998) observed that the direction of locomotion
is also specified by optic flow, the pattern of motion in the optic array projected to a
moving observation point. He proposed that optic flow could be used to steer to
a goal by aligning the focus of expansion, which specifies the heading point, with the
target, or by magnifying the target itself in the field of view. Given that optic flow is
detected by the eyes, and the eyes often rotate to maintain fixation, heading must be
determined from the motion pattern on the retina, or retinal flow. Previous studies
have demonstrated that observers can accurately determine their direction of heading
whether or not their eyes are rotating, on the basis of both optical and extra-retinal
information (Royden et al 1994; Li and Warren 2000; see Warren 2003, for a review).
Thus, here we describe and experimentally manipulate the optic flow available to an
observer under free-fixation conditions.

The observer's direction of heading is specified by the global optic flow from the
stationary background, and thus it provides information for the target-heading angle.
In a pursuit strategy based on global optic flow, an observer could visually align
the perceived heading with the target (see figure 2b). For an interception strategy, the
observer could maintain a constant visual angle between the perceived heading and
the target (see figure 2e). In addition, optical expansion of the target would ensure
that the distance to the target is decreasing.

1.2.3 Local optic flow. Local optic flow is also generated by the relative motion between
the observer and the target itself, whether the observer, the target, or both are moving.
Consequently, the motion pattern defined by the target's texture specifies the observer's
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Figure 2. Illustration of the two strategies (pursuit and interception) and three sources of
information (egocentric direction, global optic flow, and local optic flow) for walking to a
moving target.
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heading relative to a stationary or moving target.(3) Thus, one way of implementing
an interception strategy is to keep the heading specified by local flow within the
contours of the moving target, yielding a straight interception path (figure 2f ). This
assumes that there is no additional component of flow due to rotation of the target.
With a pursuit strategy, on the other hand, the heading specified by local optic flow
will trail behind the moving target (figure 2c). In addition, local expansion of the
target ensures that its distance is decreasing.

1.2.4 Binocular information. Binocular information is also available and might potentially
be used to intercept a moving target. For example, the distance to the target, and hence
over time its 3-D velocity, might be determined from binocular convergence, although
it is only effective out to a couple of meters. Alternatively, motion disparity (the relative
angular velocities of the target at the left and right eyes) specifies the passing distance
in the frontal plane; that is, what the distance between the target and the observer
will be at the moment of passage, in units of interocular distance (Regan 1993). Main-
taining the passing distance at a value of zero would lead the observer to intercept
the target on a straight path. Finally, the change in convergence or binocular disparity
over time indicates whether the distance to the target is increasing or decreasing.
Binocular information was not independently manipulated in the present experiments,
but was consistent with egocentric direction and dissociated from optic flow.

Finally, particular variables of the retinal-flow field have been proposed for the
case when the observer is fixating the moving target. For example, Cutting et al
(1995) demonstrated that there are qualitative differences in the retinal flow of ground
texture in front of and behind a moving target when the observer is on course to
pass in front of, pass behind, or collide with it. However, such theories presume that
the observer fixates the target (Cutting et al 1995; Kim and Turvey 1999; Wann and
Swapp 2000), whereas numerous studies have demonstrated that observers can deter-
mine the direction of heading during pursuit eye movements when the observer is
fixating elsewhere (Warren 2003). In the present experiments, we have chosen to begin
with the more general case and manipulate the optic flow presented to an observer
under free fixation conditions. If we find an influence of optic flow, this would suggest
further research to test particular retinal-flow variables.

The information for walking to a stationary goal has received more study than
that for a moving target. The optic-flow hypothesis was challenged by Rushton et al
(1998; see also Harris and Bonas 2002), who asked participants to walk to a stationary
goal while wearing displacing prisms. The prisms displaced both the image of the
target and the optic-flow pattern. Thus, if participants steer to a goal by centering
the optic flow on the target, they should still walk a straight path to the target, as they
do normally. But their subjects took curved paths to the target, consistent with the
use of egocentric direction.

On the other hand, Warren et al (2001) asked participants to walk to a stationary
goal in a virtual environment. Optic flow was dissociated from egocentric direction by
displacing the flow pattern from the actual direction of locomotion by 108. Participants
relied on both egocentric direction and global optic flow, but the latter increasingly
dominated as more flow and motion parallax were added to the display, consistent
with a linear combination model (see also Rogers and Allison 1999; Wood et al 2000;
Harris and Carrë 2001). Similar influences were observed by Wilkie and Wann (2002,
2003) for the task of steering curved paths to a stationary target in a driving simulator.

(3) If the target is moving in any direction other than parallel to the observer's path, the local
optic flow pattern will specify a different heading than the global optic flow pattern (Warren and
Saunders 1995).
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They found linear weighted contributions of the visual direction of the target, retinal
flow from the ground surface, and extra-retinal signals. The aim of the present study
was to determine whether observers also rely on optic flow (and hence retinal flow)
or egocentric direction in the case of walking to a moving target.

Cutting et al (1995) investigated the information observers use to judge whether
they will collide with, pass in front of, or pass behind a moving object. Judgments
were correlated with the rate of change in the simulated target-heading angle ( _b),
consistent with an interception strategy. The experiments demonstrated that intercep-
tion judgments can be based on global retinal flow, specifically differential motion
between the foreground and background about the target, and to a much weaker extent
on local optic flow, specifically the change in orientation of the target. However,
because the subjects were stationary, proprioceptive information about the locomotor
axis was not available, and thus the contribution of egocentric direction was not tested.
In addition, the displays simulated a pursuit eye movement to fixate the moving target.
Here we tested active walking and the simpler case without simulated eye rotation.

Lenoir et al (1999b) tested the influence of background texture on the speed
participants adopted when riding on a straight track to intercept a ball. When back-
ground texture was present, observers initially traveled faster than predicted by a
constant target-angle strategy, but slowed down toward the end of the approach and
intercepted the ball with a higher accuracy than when background texture was absent.
They concluded that the initial speed adjustments resulted from a background-induced
overestimation of target speed.

Thus, the roles of global optic flow, local optic flow, and egocentric direction in
intercepting a moving target remain an open question. The purpose of the present
study was to identify both the strategy and the information that humans use to walk
to a moving target in a virtual environment. To determine which strategy was used
(pursuit or interception), we analyzed the paths that they followed to targets with
different trajectories. In addition, to identify the information upon which participants
rely (egocentric direction, global optic flow, or local optic flow), we manipulated the
visual properties of the background and the target.

2 General method
2.1 Apparatus
All four experiments were conducted in the Virtual Environment Navigation Lab
(VENLab) at Brown University. Participants walked freely in a 12 m612 m area while
immersed in a virtual environment. The environment was generated on a graphics
workstation (SGI Onyx2 IR) at 60 frames per second, and presented in a stereoscopic
head-mounted display (HMD, Kaiser Electo-Optics Proview 80) with a 608 (horizon-
tal)6408 (vertical) field of view, which was covered by a black isolation shield. Images
were presented on two LCD displays (6406480 pixels) and projected via lenses to
the left and right eyes with binocular disparities that were computed for the corre-
sponding views of a 3-D scene. The participant's head position and orientation were
measured with a hybrid ultrasonic ^ inertial tracking system (Intersense IS-900) with six
degrees of freedom, at a sampling rate of 60 Hz. Information from the tracking system
was used to update the display with a latency of approximately three frames (�50 ms).

2.2 Procedure
Prior to the experiment, the lens separation in the HMD was adjusted for the partic-
ipant's interocular distance. To ensure that the stereo image pair could be fused, a
random-dot stereogram of a rectangle was tested. Before each trial, two red markers
appeared in the simulated environment. Participants prepared for a trial by standing on
one marker and facing the other, to ensure that they were positioned and oriented correctly.

694 B R Fajen, W H Warren



The color of the markers then changed from red to green, indicating that the participant
should begin walking toward the distant marker. After 0.5 m, the markers disappeared
and participants continued to walk and look in the same direction. After another
0.5 m, the moving target appeared in a controlled location. Target speed was 0.6 m sÿ1

in all experiments, about half the normal walking speed. Participants were instructed
to walk to the moving target in a natural manner, and were free to look wherever
they wanted. When they reached the target, it disappeared with a `popping' sound. The
red inter-trial markers reappeared and the participant prepared for the next trial by
walking to the marker in front of them and turning around to face the other marker.

2.3 Data analysis
The computer recorded head orientation and the x and z coordinates of left eye position
(at 30 Hz), which were used to calculate the x and z coordinates of the cyclopean point
between the left and right eyes. Both time series (x and z) were filtered with a forward
and backward 2nd-order low-pass Butterworth filter with a cutoff frequency of
0.6 Hz, to reduce the effects of gait oscillations. The filter compresses data points near
the end of the time series, which introduces an artifactual drop in speed and target-
heading angle. To eliminate these effects, the last 500 ms of the filtered time series
were truncated. The filtered position data were used to compute the participant's
direction of motion (heading, f) in exocentric coordinates (see figure 1a) in each frame
according to the following equation:

fi � arctan
xi ÿ xiÿ1
zi ÿ ziÿ1

� �
, (2)

where xi and zi are the head coordinates on the ith frame. The direction of the target
(c) with respect to an exocentric reference axis was computed from the following
equation:

ci � arctan
Xi ÿ xi

Zi ÿ zi

� �
, (3)

where Xi and Zi are the coordinates of the target on the ith frame. The target-heading
angle was computed as b � fÿ c. To compute the mean time series of target-
heading angle for each condition, the time series for each trial was normalized to a
length of 25 data points. For example, for a trial with 80 data points, the third data
point was placed in the first bin, the sixth data point in the second bin, the ninth
data point in the third bin, the twelfth data point in the fourth bin, the sixteenth data
point was placed in the fifth bin, etc. The mean target-heading angle in each bin was
then computed to yield a mean normalized target-heading-angle time series for each
condition.

Walking speed in meters per second was computed by multiplying the displacement
(in meters) on successive frames by 30, the number of frames recorded per second.
Walking-speed time series were then normalized and averaged by the same procedure
as described above.

To estimate path variability, we first calculated the mean position at each of the
25 time steps in all conditions. For each trial, we then calculated the Euclidean distance
from the mean position in the corresponding condition. The average distance from
the mean position at each time step was used to estimate path variability.

3 Experiment 1: Behavioral strategy and information
In experiment 1, we began our investigation of the contributions of local and global
optic flow by manipulating the appearance of the target and the background, and
examined the behavioral strategy by analyzing the participant's path and the time
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series of target-heading angle b. To vary the presence of local optic flow, the moving
target was either a textured post that optically expanded, or a thin, untextured line
with very little optical expansion. If local optic flow is necessary information for
the guidance of walking, then walking behavior should be affected by eliminating it.
To vary the presence of global optic flow, the target appeared either in a room with
textured walls, floor, and ceiling, or in empty black space. If global optic flow provides
necessary information, then behavior should be affected by removing the background.
Note that the egocentric direction and binocular information about the target are
available in all four conditions. Thus, if participants rely on this information, or upon
combinations of redundant variables (Landy et al 1995), behavior would be similar
across conditions.

3.1 Method
3.1.1 Participants. Eight undergraduate and graduate students participated in experi-
ment 1. No participants reported having any visual or motor impairment. They were
paid $16 for their participation in the study.

3.1.2 Displays. After participants walked 1 m straight ahead, the target appeared at a
distance of 3 m along the z axis either directly in front of the participant (Center
condition) or 258 to the left of the participant's initial heading (Side condition; see
figure 3), and moved rightward. These initial conditions were also mirrored left/right,
and the data were collapsed. The trajectory of the target either crossed perpendicular
to the participant's initial heading (08, Cross condition), approached the participant at
an angle of 308 to the perpendicular (Approach condition), or retreated at an angle of
308 (Retreat condition).

Two background conditions were crossed with two target conditions. In the Room
condition, a room with textured walls, floor, and ceiling appeared at the same time as
the target [7.5 m (depth)610.4 m (width)62.5 m (height)]. The participant was 1.5 m
from the rear wall when the target appeared at a distance of 3 m along the z axis. In
the No Room condition, the target moved through empty black space. The target was
depicted as either a textured cylinder 2.5 m tall with a radius of 0.1 m (Post condition),
or a thin, untextured line 0.0025 m wide (Line condition). In the Room condition, the
base and top of the target were clearly visible where they met the floor and ceiling,
providing information about target position and motion. In the No Room condition,
the target line ran off the top and bottom of the display so that neither its base nor
its top was visible.

Participants were instructed to walk to the target and pass through it, at which
point the target disappeared. Contact with the target, which was indicated to partic-
ipants by a `popping' noise, was assumed to have taken place when the distance

Side Center Side�308
08

ÿ308

258
Figure 3. Top view of initial conditions used in
experiment 1. The moving target appeared either
directly in front of the observer (center) or 258 to
the right or left (side) and either approached,
crossed, or retreated from the observer's initial
path of locomotion.
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between the participant's head position and the center of the target was less than
or equal to 0.2 m, regardless of whether the target appeared as a post or a line. In the
Room condition, if the target reached one of the side walls before the participant made
contact with the target, then the target disappeared and the trial ended. In the No Room
condition, an invisible rectangular boundary in the same location was used to deter-
mine when the target disappeared.

3.1.3 Design.The design for experiment 1was 2 (target type)62 (background)62 (center/
side location)62 (left/right motion)63 (target trajectory) with all variables within-
participants. Trials were blocked by target type and background and block order was
counterbalanced. There were two sessions, which were completed on consecutive days
and consisted of two blocks each. Trials within each block were presented in a random
order, and there were 5 repetitions per condition, yielding 60 trials per block and a
total of 240 trials.

3.2 Results and discussion
3.2.1 Paths. The mean paths of locomotion in each condition are plotted in figure 4.
The two columns correspond to the starting location of the target (Center, Side) and
the rows to target trajectory (Approach, Cross, Retreat). In the Center conditions,
participants gradually turn in the direction of the target motion and (in the Cross and
Retreat conditions) eventually straighten out their path to reach the target. In the
Side condition, participants turn smoothly toward the target, and either follow a
straight path to the target (Approach condition) or subsequently reverse back again to
track the target motion (Cross and Retreat conditions). There appear to be differences
between the background and target conditions in some cases, but the data for target-
heading angle permit a more sensitive analysis.
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Figure 4. Mean paths of walking for the initial target locations and trajectories in experiment 1.
Black and gray lines correspond to the Room and No Room conditions, respectively. Solid and
dotted lines correspond to the Post and Line conditions, respectively.
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3.2.2 Target-heading angle. The mean time series of target-heading angle for each
condition is plotted in figure 5. In the Center condition, the target appeared directly in
front of the participant, so the initial angle was zero (b � 08), then it dipped slightly,
gradually increased to between 108 and 208. The small initial dip is due to the fact
that the moving target briefly led the heading while participants were still walking straight
ahead. In the Side condition, the initial target-heading angle was 258 and then decreased
to a plateau between 108 and 208. Thus, contrary to the predictions of a pursuit strategy,
participants walked ahead of the moving target for most of the trial regardless of
initial conditions. Note, however, that the target-heading angle did not achieve a con-
stant value as predicted by an idealized interception strategy, but usually remained
below the predicted values of 23.88, 27.78, and 23.88 in the Center condition (Approach,
Cross, and Retreat, respectively) and 24.98 and 26.78 in the Side condition (Cross,
Retreat), although it did plateau near the predicted 15.58 in the Side/Approach condition
(calculated for the mean maximum v of 1.29 m sÿ1).

To evaluate the effects of target type and background, we performed ANOVAs
on the mean value of b in the 15th, 20th, and 25th bin (60%, 80%, and 100% of the
trial, respectively). Because we were mostly interested in the effects of background
and target type, we ran six separate 2 (background)62 (target)63 (time step) ANOVAs,
one for each condition of starting location and target trajectory. The results of all
six ANOVAs are summarized in table 1. The main effect of time step was significant in
all six conditions, confirming that the target-heading angle changed over the course
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Figure 5. Mean time series of target-heading angle (b) for the initial target locations and
trajectories in experiment 1. Black and gray lines correspond to the Room and No Room conditions,
respectively. Solid and dotted lines correspond to the Post and Line conditions, respectively.
Individual trials were normalized to a length of 25 time steps to allow for comparison between
conditions (see section 2). Mean and standard deviation of trial duration in each condition was
as follows: 2.38 s (SD � 0:30 s) in Center/Approach, 1.95 s (SD � 0:11 s) in Side/Approach,
2.95 s (SD � 0:29 s) in Center/Cross, 2.65 s (SD � 0:44 s) in Side/Cross, 3.69 s (SD � 0:40 s) in
Center/Retreat, and 3.27 s (SD � 0:28 s) in Side/Retreat.
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of the trial. In addition, there was a significant main effect of background in all
conditions except the Side/Approach and Side/Cross conditions, for the mean target-
heading angle was greater with the Room than No Room (see figure 5). In contrast,
the main effect of target type was not significant in any of the conditions. None of
the interactions were significant. Thus, the statistical analyses of target-heading angle
reflect the pattern evident in the time series of figure 5. The results indicate a small
influence of the background, but no influence of local flow from the target. Moreover,
these effects were generally consistent across different initial conditions.

3.2.3 Walking speed. Mean time series of walking speed for each condition are plotted
in figure 6. The overall mean initial walking speed at the moment the target appeared
was 1.07 m sÿ1. It increased gradually over the course of the trial to a mean maximum
walking speed of 1.29 m sÿ1, and then dropped slightly to mean final walking speed of
1.24 m sÿ1 near the end of the trial. This pattern was quite consistent across all conditions.

Table 1. F-values for ANOVAs in experiment 1.

Center Side

Approach Cross Retreat Approach Cross Retreat

Target angle, b
Background 25.20** 7.79* 8.159* 0.67 4.95 15.95**
Target 1.73 0.12 0.01 0.02 1.08 0.01
Time 54.59*** 105.28*** 9.05** 5.46* 21.72*** 38.51***

Walking speed
Background 0.69 0.36 0.55 0.04 2.01 0.55
Target 4.70 5.77* 1.59 0.16 0.01 1.30
Time 2.29 4.15 3.02 4.83 3.45 2.22

* p 5 0:05; ** p 5 0:01; *** p 5 0:001.
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We performed statistical analyses to test the effects of background and target on walking
speed at the 15th, 20th, and 25th time step. Six separate ANOVAs for each condition
of starting location and target trajectory were run, the results of which are summarized
in table 1. With one exception, none of the effects of background, target type, or time
step were significant. The one exception was the effect of target type in the Center/
Cross condition, F1 7 � 5:77, p 5 0:05, which indicated that participants walked slightly
faster in the Line condition (M � 1:28 m sÿ1) than they did in the Post condition
(M � 1:25 m sÿ1). This confirms the observations based on figure 6 that walking speed
was generally unaffected by background or target type.

3.2.4 Path variability. If people rely on more than one source of information, then
removing a source of information may affect the variability in the interception path.
Mean path variability for each condition is plotted in figure 7. Overall, variability
gradually increases throughout the first part of the trial before leveling off, probably
because the position of the target constrains the position of the observer as he or she
intercepts it. There was a trend towards more variability in the No Room condition
for some initial conditions, but none of the main effects or interactions was statistically
significant, with one exception: there was a time step effect in the Center/Retreat condi-
tion (F2 14 � 5:24, p 5 0:05).

In sum, there are three major findings of experiment 1. First, target-heading angle
appeared to converge from different initial conditions to a value between 108 and 208,
indicating that participants walked ahead of the target at a roughly constant speed
for most of the trial. This result contradicts a pursuit strategy, which predicts that
participants should walk directly toward the target (b � 08). However, the pattern of
behavior did not match the simple prediction of a constant interception angle either, for
participants did not actually hold b constant and seldom reached the predicted b̂ value.
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This could be due to the fact that initial target distance (3 m) and mean trial duration
(3 s) were rather short, so they did not have time to achieve a constant b.

The second main finding is that behavior remained the same whether the target
was an expanding post or a narrow line. The simplest interpretation of this result is
that participants do not rely on local optic flow. However, it is possible that partici-
pants used local optic flow in the Post condition, and redundant global optic flow or
egocentric direction information in the Line condition. We consider this possibility in
experiment 2 by independently manipulating the local optic flow.

Third, behavior was affected by the presence of a background. The target-heading
angle grew more rapidly to somewhat higher values in the Room condition than the
No Room condition. Nevertheless, the basic forms of the paths and time series were
the same, indicating that information from the target alone is sufficient for interception.
One possibility is that, because global optic flow was redundant with egocentric direction,
their combined influence yielded a faster turning rate and greater angle in the Room
condition. Another possibility is that the presence of a stationary background enhanced
the perception of target motion. We explored this issue in more detail in experiments 3
and 4 by manipulating global optic flow independently of egocentric direction.

4 Experiment 2: Local optic flow
The purpose of experiment 2 was to test the contribution of local optic flow to inter-
ception behavior. In most natural conditions, and those of experiment 1, egocentric
direction, global optic flow, and local optic flow provide redundant information about
the target-heading angle. To dissociate them, we manipulated local optic flow by rotat-
ing the target about a vertical axis, and eliminated the background. Relying on local
optic flow would thus yield a different approach path than relying on egocentric direction.

This can be illustrated as follows. In figure 8a, the agent is executing an interception
strategy that maintains a constant target-heading angle b. The only relative motion
between the agent and the target is along the radial axis, yielding a heading from local
flow aligned with the target. The absence of relative motion along the transverse axis
means that the same side of the target continues to face the agent. Now suppose that
the observer in figure 8b follows a path that is 108 to the left of the interception path,
such that the target-heading angle decreases. This shifts the heading from local flow
by 108 to the left of the target, and the left side of the target begins to come into view
during the approach.

By rotating the target about a vertical axis, we can reproduce the local optic flow
pattern in figure 8b for an agent that is actually on an interception course. The observer
in figure 8c is on an interception path with a constant target-heading angle, but the
target is rotating counterclockwise about a vertical axis, adding a rightward component
of local optic flow. This shifts the heading from local optic flow to the left by 108,
analogous to figure 8b, and more of the left side of the target comes into view. If the
agent is using the local optic flow to intercept the target, this would lead to walking
rightward to shift the heading from local optic flow back on the target, yielding a larger
interception angle (figure 8d); the agent also keeps facing the same side of the target.
If, on the other hand, the agent relies on the egocentric direction of the target, she/he
should be unaffected by this manipulation of local optic flow.

4.1 Method
4.1.1 Participants.Nine undergraduate and graduate students participated in experiment 2.
No participants reported having any visual or motor impairment. Participants were paid
$8 for their participation in the study.

4.1.2 Displays. The displays were similar to those used in the Center/No Room/Post
condition of experiment 1, with a few changes. The target appeared directly in front of
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the observer and moved through empty black space. First, initial target distance
along the z axis was 4 m rather than 3 m, which increased the trial duration and
allowed us to collect longer samples. Second, only the Cross (08) and Retreat (308) target
trajectories were presented. Third, the trial ended and the target disappeared if the
target reached an invisible border 6 m to the right or left of its initial position before
the participant made contact with the target. Fourth, the target was a cylindrical post
covered by a fine, wood-grained texture and 8 brightly colored, vertical stripes, providing
detail at both near and far distances. Thus, local optic flow was made more salient and
global optic flow was eliminated, enhancing the conditions for use of local optic flow.

The local optic flow was manipulated to correspond to a heading direction that
was offset from the actual walking direction by 08, �108, �208, or �408. To explain the
details of the manipulation, let point A be a point on the surface of the target facing
the observer and point B be a point at the center of the target (on its longitudinal
axis). For a nonrotating target, the relative optical velocity of these two points is zero
if and only if the observer is on a constant-interception-angle path. The more the
observer departs from a constant-interception-angle path, the greater the relative opti-
cal velocity of points A and B. On each frame, the computer calculated the relative
optical velocity of points A and B for the observer's current path and for an observer

b b

b b

� �

� �

(a) (b)

(c) (d)

Figure 8. Illustration of the manipulation of local optic flow used in experiment 2. (a) Interception
path: agent and target have the same transverse velocity, so their relative motion consists solely
of an approach. The local heading point is thus centered on the target. (b) The agent's path is
108 to the left of the interception path, so the local heading point appears 108 to the left of the
target. (c) Interception path with rightward (counterclockwise) rotation of the target, which
shifts the local heading point 108 to the left of the target. (d) To keep the local heading point
on the target, the agent compensates by turning 108 to the right.
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walking to the left or right by an amount equal to the offset angle. The difference
between these relative optical velocities corresponds to the difference in local optic
flow between the actual and offset heading directions, and determines the amount of
target rotation. Thus, the relative optical velocity of points A and B would be zero
if and only if the observer's path deviated from a constant-interception-angle path by
an amount equal to the offset angle.

4.1.3 Design. The design for experiment 2 was 2 (target trajectory)62 (left/right motion)
67 (offset angle). All variables were within-participants and trials were presented in a
completely random order. There were 4 repetitions per condition for a total of 112 trials.

4.2 Results and discussion
4.2.1 Target-heading angle. The mean time series of target-heading angle for each
condition appear in figure 9. Similar to the Center/No Room condition of experi-
ment 1, b increased from 08 to between 108 and 158. This is again consistent with an
interception strategy. Most importantly, there was no influence of the flow offset on
mean target-heading angle. In separate ANOVAs for the two target trajectory condi-
tions (see table 2), there were no significant main effects or interactions involving offset
angle, confirming that local optic flow did not influence target-heading angle.

4.2.2 Walking speed. Mean walking speed time series for both target trajectories appear
in figure 10. The overall mean initial walking speed at the moment that the target first
appeared was 1.20 m sÿ1, and it gradually increased for most of the trial to a mean
maximum walking speed of 1.42 m sÿ1 before decreasing slightly to a mean final walking
speed of 1.30 m sÿ1. These data are quite consistent with the results from experiment 1.
Separate ANOVAs for the two target trajectory conditions confirmed that there were
no effects of offset angle on walking speed (see table 2), consistent with the interpreta-
tion that participants do not rely upon local optic flow to intercept a moving target.
This time, the effect of time step reached significance.
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Figure 9. Mean time series of target-heading angle in experiment 2 for the Cross (top panel) and
Retreat (bottom panel) conditions. Different lines correspond to different offset angle conditions.
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4.2.3 Path variability. As in experiment 1, path variability gradually increased throughout
the first part of the trial before leveling off. The effect of offset angle was not statis-
tically significant in either the Cross or Retreat conditions.

The purpose of experiment 2 was to test whether participants would be influenced by
local optic flow when it was placed in conflict with egocentric direction. The results
indicate that interception behavior is unaffected by the manipulation of local optic flow,
but remains consistent with the use of egocentric direction. It is important to point out
that the display contained no background optic flow and the target itself had quite salient
texture, so the conditions were optimal for using local optic flow. The results thus strongly
suggest that participants do not rely upon local optic flow to control steering when
intercepting a moving target.

5 Experiment 3: Global optic flow
In experiment 3, we tested the contribution of global optic flow to interception behavior.
In principle, the current target-heading angle b could be determined from the angle
between the visual direction of the goal and the current heading specified by global optic
flow, or from the egocentric direction of the goal with respect to the proprioceptive
locomotor axis. To dissociate these two hypotheses, we manipulated the global optic
flow by adding motion to the background.

We can illustrate the manipulation as follows. The observer in figure 11a is traveling
on an interception path with a constant target-heading angle. The global optic flow
from the background specifies the current heading direction, and thus the angle
between the heading point and the target also remains constant over time (b1 � b2 ).
In figure 11b, the observer is walking 108 to the left of the interception path, so the
target-heading angle decreases over time (b1 4 b2 ). By moving the background, we
can reproduce the global optic flow pattern in figure 11b for an observer who is actually
on a correct interception path. The observer in figure 11c is on a correct intercep-
tion path (like the observer in figure 11a), but the background is moving to the right,
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Figure 10. Mean time series of walking speed in the Cross (top panel) and Retreat (bottom panel)
conditions of experiment 2. Different lines correspond to different offset angle conditions.
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which shifts the global optic flow pattern to the left. The result is that the perceived
target-heading angle decreases as in figure 11b. To keep a constant perceived target-
heading angle, the observer would compensate by walking to the right (as in figure 11d)
or by walking faster, creating an increasing angle between the target and the
actual heading. Alternatively, if egocentric direction rather than global optic flow is
used, behavior should be unaffected by this manipulation.

5.1 Method
5.1.1 Participants. Eight undergraduate and graduate students participated in experiment 3.
None reported having any visual or motor impairment. They were paid $8 for their
participation in the study.

5.1.2 Displays. Displays were similar to those in the Center/Room/Line condition of
experiment 1, with a few exceptions. A wider room was used (10 m deep625 m wide
62.5 m high) to keep the target from reaching the walls, which moved independently,
before the participant could intercept the target. To eliminate any influence of local
optic flow, the moving target was an untextured red line with a radius of 0.01 m. Initial
target distance (4 m), starting location (Center), and target trajectories (Cross and
Retreat) were the same as in experiment 2. After the markers changed color and the

b2
b2

b1 b1

b2

b1

b2

b1

b1 � b2 b1 4 b2

b1 4 b2 b1 � b2

(a) (b)

(c) (d)

Figure 11. Illustration of the manipulation of global optic flow used in experiment 3. (a) Inter-
ception path with a constant angle between the global flow pattern and the target. (b) The agent's
path is 108 to the left of the interception path, producing a decreasing target-heading angle.
(c) Shifting the global flow pattern 108 to the left of the actual interception path (black arrow) yields
a decreasing perceived target-heading angle, specifying an offset path 108 to the left (gray arrow).
(d) To maintain a constant perceived target-heading angle, the agent compensates by turning 108
to the right, yielding an increasing angle between the target and the actual heading (black arrow).
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room appeared, the participant waited 1 s for the markers to disappear before starting
to walk straight ahead; the target then appeared after the participant had walked 1.0 m.
If the target reached an invisible border 4 m to the left or right of its initial position
before the participant intercepted it, the target disappeared and the trial ended.

To explain the details of the global optic flow manipulation, consider the change in the
angle between the target and heading specified by global optic flow (ie the target-visual-
heading angle). When optic flow is not manipulated, the change in target-visual-heading
angle is zero if and only if the observer is walking on a constant interception angle
path. Deviations from the constant interception angle path will result in changes in
the target-visual-heading angle. On each frame, the computer calculated (i) the change
in the target-visual-heading angle for the observer's current path, and (ii) the change in
the target-visual-heading angle for an observer walking to the left or right by an
amount equal to the offset angle. To make the target-visual-heading angle change as if
the observer was walking in the offset direction, the flow pattern was shifted by an
angle equal to the difference between (i) and (ii). This shift was achieved by rotating
the room about the observer. Thus, the change in target-visual-heading angle would be
zero if and only if the observer's path deviated from the constant-interception-angle
path by an amount equal to the offset angle. Seven offset angles were used: 08, �58,
�108, and �208. Positive offset angles corresponded to shifts in the global flow ahead
of the target and negative offset angles corresponded to shifts behind the target.

5.1.3 Design. The design for experiment 3 was 2 (target trajectory)62 (left/right motion)
67 (offset angle). All variables were within-participants. Trials were presented in a com-
pletely random order. There were 4 repetitions per condition for a total of 112 trials.

5.2 Results and discussion
5.2.1 Target-heading angle. Mean time series of target-heading angle appear in figure 12.
As in the Room condition of experiment 1, b increased from 08 to between 158 and 258.
More importantly, target-heading angle was greater when the global flow pattern was
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Figure 12. Mean time series of target-heading angle in the Cross (top panel) and Retreat (bottom
panel) conditions of experiment 3. Curves correspond to different offset angle conditions.
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offset in the same direction as the target motion (ie positive offset angles), and pro-
gressively smaller when the flow pattern was offset in the opposite direction (negative
offset angles). Surprisingly, however, the direction of this effect was opposite to that
which would be expected if participants used global optic flow. Separate ANOVAs for
both target trajectory conditions revealed significant main effects of offset angle (see
table 2). In addition, we ran six planned comparisons to test the differences between
the 08 offset condition and all other offset conditions at the 25th time step. These analyses
revealed significant ( p 5 0:05) differences at the ÿ108 and ÿ208 offsets for both trajec-
tory conditions. The only positive offset condition that reached significance was �58 in
the retreat trajectory, suggesting that the effect of the flow offset angle was asymmetric.
We will discuss the direction of this offset below.

5.2.2 Walking speed. The mean time series of walking speed for both target trajectories
appear in figure 13. The mean initial speed when the target appeared was 1.10 m sÿ1,
and it gradually increased for most of the trial to a mean maximum of 1.42 m sÿ1, before
decreasing slightly to a mean final speed of 1.31 m sÿ1. These data are almost identical
to those of experiment 2. Although offset angle affected target-heading angle, it did not
affect walking speed. Separate ANOVAs for both target trajectory conditions revealed
no significant effects of offset angle on walking speed (see table 2).

5.2.3 Path variability. Once again path variability gradually increased and then leveled
off toward the end of the trial. The effect of offset angle was not statistically significant
in either the Cross or Retreat conditions.

Although offset angle had a significant effect on b, it was in the direction opposite
that predicted by global optic flow. This result appears to be consistent with reliance on
egocentric direction, with the qualification that the motion of the background influenced
the perception of the target motion. For example, to produce a negative offset, the
room was moved in the same direction as the target, thereby decreasing their relative
motion. This may have increased the latency to detect target motion at the onset of a
trial, and/or decreased perceived target speed. Conversely, to produce a positive offset,
the room was moved in the opposite direction of the target, increasing their relative
motion. However, the asymmetry of the offset-angle effect suggests that the increase
in relative motion did not decrease the latency to detect target motion.

This interpretation is consistent with the Room effect observed in experiment 1.
In that case, removal of the stationary background eliminated relative motion between
the target and background. This may have similarly increased the latency to detect
target motion and/or reduced the perceived target speed, resulting in a smaller target-
heading angle. In sum, the results of experiment 3 are consistent with reliance on
egocentric direction rather than global optic flow to guide an interception strategy, and

Table 2. F-values for ANOVAs in experiments 2 and 3.

Target angle, b Walking speed

Cross Retreat Cross Retreat

Experiment 2
Offset 0.95 1.20 0.99 1.83
Time 510.24*** 58.90*** 18.90*** 42.29***
Offset6Time 1.62 0.66 1.53 0.64

Experiment 3
Offset 4.54* 8.15** 2.22 0.74
Time 88.04*** 31.84*** 31.33*** 28.27***
Offset6Time 2.52 3.08 0.69 1.69

** p 5 0:01; *** p 5 0:001.

Intercepting a moving target 707



suggest that the influence of the background is to enhance or reduce the perceived
motion of the target.

6 Experiment 4: Relative motion
We tested the above interpretation in experiment 4 by manipulating the relative motion
between the target and the background. In the previous Room condition, the relative
motion coincided with target motion, and in the No Room condition relative motion
was absent. In the present experiment we added a Moving Room condition in which the
background moved at the same speed and direction as the target, thereby reducing
the amount of motion parallax between the target and the background. If relative
motion between the target and the background influences the detection of target motion,
then behavior in the Moving Room condition should be shifted away from that in the
Room condition toward that in the No Room condition.

6.1 Method
6.1.1 Participants. Nine undergraduate and graduate students participated in experiment 4.
None reported any visual or motor impairment. They were paid $8 for their participation.

6.1.2 Displays. Displays were similar to those in the Center/Line and Side/Line condi-
tions of experiment 1. The target line appeared at a distance of 4 m along the z axis
and traveled on the Cross (08) or Retreat (308) trajectory. In the No Room condition,
the target appeared in empty black space. In the Stationary Room condition, a room
with dimensions 12 m (deep)612 m (wide)62.5 m (high) appeared at the same time
as the target. The rear wall of the room was 2 m behind the observer at the time that
the target and room appeared. In the Moving Room condition, the room moved
at the same speed and direction as the target. As in experiment 1, participants began
walking when the red inter-trial markers turned green, the markers disappeared at
0.5 m, and the target appeared at 1.0 m. If the target moved 6 m from the center of
the room before the observer reached it, the target disappeared and the trial ended.
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Figure 13. Mean time series of walking speed in the Cross (top panel) and Retreat (bottom
panel) conditions of experiment 3. Curves correspond to different offset angle conditions.
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6.1.3 Design. The design for experiment 4 was 3 (background)62 (target trajectory)
62 (center/side location)62 (left/right motion). All variables were within-participants
and trials were presented in a completely random order. There were 5 repetitions per
condition for a total of 120 trials.

6.2 Results and discussion
6.2.1 Target-heading angle. The mean time series of target-heading angle for each
condition is shown in figure 14. b reached lower values in the No Room condition than
in the Stationary Room condition, replicating the background effect of experiment 1.
The new result is that b was also lower in the Moving Room condition than in
the Stationary Room condition, shifted in the direction of the No Room condition.
This indicates that canceling the relative motion between the target and background
influences behavior in the expected direction. Separate ANOVAs for each target trajec-
tory and starting location condition revealed significant main effects of background
(see table 3). We also conducted planned comparisons to test the difference between
the Stationary and Moving Room conditions at the 25th time step. These differences
were significant in the Retreat/Side condition and marginally significant ( p � 0:09) in
the Retreat/Center condition, but did not reach significance in either Cross condition.
It could be that this effect was stronger in the Retreat condition because there was
more time for the background motion to influence walking direction.

6.2.2 Walking speed. Mean time series of walking speed appear in figure 15. The mean
initial walking speed at the moment that the target first appeared was 1.23 m sÿ1,
then it gradually increased for most of the trial to a mean maximum value of
1.51 m sÿ1, before decreasing to a mean final speed of 1.37 m sÿ1. Separate ANOVAs
confirmed that there were no significant main effects or interactions involving back-
ground on walking speed (see table 3).
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6.2.3 Path variability. As in experiment 1, there was a trend toward more variability in
the No Room condition compared to the Stationary Room condition. However, the
effect of background was not significant in any of the conditions.

Thus, the results are consistent with the interpretation that participants rely on ego-
centric direction to intercept the target, and the contribution of the background is to
enhance or reduce perceived target motion. If so, the question arises why the Moving
Room condition did not reduce b to the same level as the No Room condition, given
the absence of relative motion in both. It is possible that it is harder to detect the
egocentric motion of a single line in empty space than the motion of a large structured
scene, which is in turn harder to detect than the motion of a target against a background.
This would account for the ordering of conditions in the present data (figure 14).

Table 3. F-values for ANOVAs in experiment 4.

Center Side

Cross Retreat Cross Retreat

Target angle, b
Background 8.70* 9.41** 10.15** 12.78***
Time 41.09*** 11.96** 6.51* 8.65*
Background6Time 2.10 1.78 5.61* 0.26

Walking speed
Background 0.92 0.68 3.51 0.98
Time 18.92*** 28.32*** 21.92*** 25.13***
Background6Time 0.50 1.76 0.18 1.20

* p 5 0:05; ** p 5 0:01; *** p 5 0:001.
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Figure 15. Mean time series of walking speed for the initial target locations (Center or Side)
and trajectories (Cross or Retreat) in experiment 4. The solid black, solid gray, and dotted black
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7 General discussion
The purpose of the present study was to identify the behavioral strategies and visual
information used in walking to a moving target. We considered two possible strategies:
(a) the pursuit strategy, in which the agent continually heads directly toward the
target (b � 0); and (b) the interception strategy, in which the agent walks ahead of
the target (b 4 0). Either strategy may rely upon several types of normally redundant
information: (a) egocentric direction, the visual direction of the target relative to the
felt locomotor axis; (b) global optic flow, the visual direction of the target relative to
the heading specified by the background flow; and (c) local optic flow, the motion
pattern from the target itself, which specifies the observer's heading with respect to the
target. The experimental results lead us to conclude that participants use an intercep-
tion strategy to walk to a moving target, and are guided primarily by the egocentric
direction of the target. Let us discuss these issues in turn.

7.1 Behavioral strategy
First, the results of experiment 1 clearly demonstrate that participants do not use a
pursuit strategy, for b is greater than zero for nearly all of a trial. Rather, they adopt
a form of interception strategy, turning to walk ahead of the target regardless of its
initial position or trajectory. This is not altogether surprising, for a pursuit strategy
would require the agent to continually turn to keep the heading direction aligned with
the moving target, leading to a longer curved path with a longer duration. In contrast,
an interception strategy leads to a shorter, straighter path to the target. Our finding is
contrary to that of Rushton et al (1998), who reported a pursuit strategy with a slowly
moving target (0.1 m sÿ1), which we attribute to our faster suprathreshold target motion
(0.6 m sÿ1). However, it is also contrary to an idealized constant bearing strategy,
for participants do not maintain a constant interception angle or follow a straight
path, at least over these short distances (3 ^ 5 m). Instead, interception behavior exhibits
dynamics that include an initial turn onto a straight path with a heading that leads the
target, and a final decrease in b at the end of the approach.

In a companion modeling study (Warren and Fajen, submitted), we succeeded in
simulating these behavioral dynamics with an extension of our previous model of steering
and obstacle avoidance (Fajen and Warren 2003). The basic model is a second-order
dynamical system analogous to an angular mass-spring that generates a sequence of
headings, assuming a constant walking speed. To steer toward a stationary goal, the model
nulls the heading error b, so the heading direction is attracted toward the direction of the
goal, at a rate that depends upon target distance. A damping term prevents oscillation
about the goal direction and tends to yield straight paths. To model interception, we
simply substituted _b for b. The model then nulls _b, leading to a constant interception
angle, while the damping term leads to a straight path. This yields interception behavior
that closely fits the human data in figure 4, including the initial transient to turn ahead
of the target depending on initial conditions. The null _b model is similar to one proposed
by Wilkie and Wann (2003) for steering to stationary goals, following Fajen and Warren
(2003).

7.1.1 Stationary versus moving targets. The finding that people appear to use a pursuit
strategy for stationary or slowly moving targets (null b) and an interception strategy for
faster moving targets (null _b) raises an important question about the organization of
behavior. As target speed increases, is there a switch between two distinct strategies? One
possibility is that people switch from a null-b strategy for targets that they perceive
as stationary to a null- _b strategy for targets that they perceive as moving, as implied
in our model. Alternatively, there may be a single strategy that applies to both cases.
For example, Wilkie and Wann's (2003) model, which steers to stationary targets by
nulling _b, would generalize to moving targets. However, Fajen and Warren's (2003)
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model, which nulls b, more closely fits the human data for stationary targets across a
range of target distances. Another approach is to explicitly compute the interception
angle b̂ [as in equation (1)], which smoothly goes to zero as the target velocity goes to
zero, and null bÿb̂ (Warren and Fajen, submitted). It remains to be determined
whether humans use a single strategy to steer to stationary and moving targets, or
whether they switch between two distinct strategies.

7.2 Information
Second, the results indicate that participants rely on the egocentric direction of the
moving target to guide their interception behavior, rather than local or global optic
flow. In experiment 2, we manipulated the local optic flow from the target indepen-
dently of egocentric direction and found that participants were unaffected by local
optic flow. In experiment 3, we manipulated global optic flow independently of ego-
centric direction. Although there was an effect of background motion, the direction of
the effect was opposite to that predicted by reliance on global optic flow. We hypoth-
esized that relative motion between the target and background can either enhance or
reduce the perceived target motion. Converging evidence was provided by experi-
ment 4, in which moving the background at the same speed and direction as the target
reduced the target-heading angle. These results lead us to conclude that people walk
to moving targets by using an interception strategy based on the egocentric direction
of the target, with the caveat that relative motion with the background can influence
perceived target motion.

7.2.1 Influence of the background. There is considerable disagreement in the literature
over the effects of background structure on perceived speed of a moving object (Gogel
and McNulty 1983) and performance on interception tasks such as catching a ball
(Savelsbergh and Whiting 1988; Montagne and Laurent 1994; van der Kamp et al 1997),
and striking a moving target with the hand (Smeets and Brenner 1995). One of the few
consistent findings is that the presence of stationary background texture increases the
perceived speed of a moving object. Lenoir et al (1999b) reported precisely this effect
for intercepting a moving ball during self-motion. This is consistent with the interpreta-
tion that our participants perceived the target speed to be faster when the background
was present, and slower when it was absent or moving in the same direction as the
target. In addition, the initial detection of target motion at the onset of a trial could
have been facilitated by a stationary background, and delayed when the background
was absent or moving with the target. Thus, we believe that the influence of the back-
ground on perceived target motion is sufficient to account for the observed room effects.

7.2.2 Stationary versus moving targets. Previous research indicates that people use both
global optic flow and egocentric direction to walk to a stationary target (Wood et al
2000; Harris and Carrë 2001; Warren et al 2001), whereas we find they rely on ego-
centric direction alone to intercept a moving target. Why might this be so? With a
stationary target, the observer can null b by placing the perceived heading on the
target, or by canceling the motion parallax of the surrounding environment with respect
to the target. If the target is moving, however, the motion parallax cannot be cancelled,
and using global optic flow in this manner leads to a pursuit strategy. Thus, global
optic flow may dominate with a stationary target when it is particularly effective for
nulling b, whereas egocentric direction may dominate with a moving target.

This finding appears inconsistent with the results of Cutting et al (1995), who
concluded that collision judgments are based on the motion parallax between the
foreground and background of a moving target. However, because they tested a psycho-
physical task with stationary participants, the proprioceptive locomotor axis was
undefined and egocentric direction information was unavailable. Their results thus
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demonstrate that the visual system can use the global retinal flow to judge a collision
course in the absence of egocentric information. However, our results indicate that
actual interception behavior seems to be based on the egocentric direction of the target.

In conclusion, the present results indicate that people walk to moving targets using an
interception strategy, that is guided by the egocentric direction of the target. The experi-
ments are part of a research program in which we are testing elementary locomotor
behaviors with the aim of modeling locomotion in a complex, dynamic environment.
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APPENDIX: Interception
Target velocity u can be described by two orthogonal components, the transverse speed
ut perpendicular to the agent's line of sight, and the radial speed ur along the line
of sight (figure 1c). Analogously, agent velocity v has a transverse component vt and
a radial component vr . If the following two conditions are satisfied, the agent will
successfully intercept the target.
(1) First, the agent matches the transverse speed of the target

vt � ut . (A1)

They thus share a common moving reference frame, reducing the problem to one
dimension.
(2) All that remains is that the agent move toward the target along the line of sight:

vr 4 ur (A2)

so the target (or goal) distance dg decreases.
If u and v are constant, these conditions result in a straight path with a constant

interception angle, that intercepts the target at the point where the two paths cross.
The first condition guarantees that the agent and target (goal) will arrive at the inter-
ception point at the same time (ta � tg ). Since

ta � dt=vt ,

tg � dt=ut ;
(A3)

then if vt � ut they will travel the same transverse distance dt in the same amount
of time, ta � tg . (Equal time intervals are indicated by the parallel dotted lines in
figure 1c.) The second condition guarantees that the two paths intersect. On the other
hand, if vr � ur they are parallel, and if vr 5 ur they diverge, so interception is
unsuccessful.

For a given agent speed kvk, the required interception angle b̂ that will yield a
straight path at a constant angle follows from the first condition

b̂ � arcsin
vt
kvk
� �

� arcsin
ut
kvk
� �

. (A4)

Conversely, for a given interception angle, the required agent speed is

kvk � ut

sinb̂
. (A5)

If agent speed kvk or target speed, or direction u change during the approach,
then the path may not be straight and b̂ may not be constant. However, as long as the
two conditions continue to be satisfied, such that the agent tracks the change in ut
and keeps closing the target distance, interception will eventually succeed.
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