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Gibson (1979) argued that “control lies not in the brain, but in the animal-
environment system.” To make good on this claim, we must show how adaptive
behavior emerges from the interactions of an agent with a structured environment
guided by occurrent information. Here we attempt to model the behavioral dynam-
ics of human walking and show how locomotor paths emerge “online” from simple
laws for steering and obstacle avoidance. Our approach is inspired by Schöner,
Dose, and Engels’s (1995) control system for mobile robots.

By behavioral dynamics, we mean a description of the time evolution of observed
behavior. Assume that goal-directed behavior can be described by a few behavioral
variables, which define a state space for the system. Goals correspond to attractors in
state space to which trajectories converge, whereas states to be avoided correspond
to repellors from which trajectories diverge. The problem is to formalize a system of
differential equations, or dynamical system, whose solutions capture the observed
behavior.

We take the current heading direction φ and turning rate as behavioral vari-
ables, assuming travel at a constant speed v (see Figure 1). From the agent’s current
(x, z) position, a goal lies in the direction ψg at a distance dg; an obstacle may also lie
in direction ψo at a distance do. The simplest description of steering toward a goal is
for the agent to bring the heading error between the current heading direction and
the goal direction to zero (φ – ψg = 0), which defines an attractor in state space.
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Conversely, the simplest description of obstacle avoidance is to increase the head-
ing error between the current heading and the obstacle direction (φ – ψo > 0), de-
fining a repellor. In addition, nearby obstacles must be avoided before distant ones,
so distance (or time to contact) is also likely to influence behavior.

To measure how people walk to a goal and avoid an obstacle, we (Fajen & War-
ren, 2003) performed a series of experiments in a large virtual environment. We
then modeled this behavior and tried to predict the routes that people take in more
complex situations. When steering to a stationary goal, participants turn onto a
straight path (Figure 2a) and turn more rapidly when the goal is at a greater initial
angle or a closer distance. Their angular acceleration increases linearly with goal
angle and decreases exponentially with goal distance. The time series of heading
error converge to zero from all initial conditions (Figure 2b) such that the goal di-
rection behaves like an attractor of heading.

We modeled this behavior as an angular “mass-spring” system. To get an intu-
ition, imagine that the agent’s current heading direction is attached to the goal di-
rection by a damped spring whose stiffness is modulated by the goal distance.
Angular acceleration is thus a function of both heading error (φ – ψg) and goal
distance (dg):

(1)

The “damping” term b resists turning. The “stiffness” term reflects the finding
that angular acceleration increases linearly with heading error, and the kg parame-
ter determines the slope of this function. Finally, the attractiveness of the goal de-
creases exponentially with distance, where c1 determines the rate of decay and c2 a
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FIGURE 1 Definition of variables.
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minimum angular acceleration for distant goals. Least-squares fits to the mean
time series yielded b = 3.25, kg = 7.50, c1 = 0.40, and c2 = 0.40.

Simulations generate locomotor paths that are very close to the human data
(Figure 3a) and time series that converge to zero in a similar manner (Figure 3b).
The fits averaged r2 = .98 over all conditions, indicating that the model success-
fully captures the behavioral dynamics of turning to a goal.

Now consider how people avoid an obstacle en route to a goal (Fajen & Warren,
2003). Once again, both the initial angle and distance of the obstacle influenced
their path (Figure 4a). In this case, the angular acceleration decreased exponen-
tially with both heading error and obstacle distance. The time series of heading
error (Figure 4b) shows that the curves diverge from zero in all conditions such that
the direction of the obstacle behaves like a repellor.

To model this behavior, we simply added an obstacle component to the previ-
ous equation. Imagine that the heading direction is repelled from the obstacle di-
rection by another spring. At any moment, the current heading is the resultant of
all spring forces acting on the agent. Angular acceleration is thus a function of the
heading error (φ – ψo) and obstacle distance (do):

(2)

The obstacle “stiffness” term reflects the finding that angular acceleration de-
creases exponentially with a rightward or leftward heading error; the amplitude of
this function is determined by the parameter ko and its decay rate by c3. The stiff-
ness again decreases exponentially with obstacle distance, where c4 is the decay
rate. We fit the extended model to the mean time series for heading error yielding
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FIGURE 2 Walking to a goal at a distance of 2, 4, or 8 m. (a) Mean paths with an initial goal an-
gle of 20°. (b) Mean time series of goal angle from initial values of ±10° or 20°. s = seconds. From
“Behavioral Dynamics of Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen
and W. H. Warren, 2003, Journal of Experimental Psychology: Human Perception and Performance,
29, pp. 343–362. Copyright 2003 by the American Psychological Association. Reprinted with
permission.
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parameter values of ko = 198.0, c3 = 6.5, and c4 = 0.8. Simulations reproduced the
human paths (Figure 5a) and time series (Figure 5b) with a mean r2 = .975. The
model thus captures the behavioral dynamics of obstacle avoidance.

Now that we have formulated basic goal and obstacle components, can we use
them to predict more complex behavior? In the model, routes emerge from the
agent’s interaction with the environment rather than being explicitly planned in ad-
vance. We first tested the simplest case of route selection comparing a direct “inside”
path around an obstacle to a goal with a longer “outside” path, depending on the ini-
tial conditions. Participants switched from an outside to an inside path when the ini-
tialanglebetweenthegoalandtheobstacle increasedto2° to4°andas thedistanceof
the goal decreased. The model exhibited a similar pattern of switching but at a some-
what larger angle. Adjusting the “risk” parameter c4 from 0.8 to 1.6, which allowed a
closer approach to the obstacle, induced the switch in the human range.

Such a choice appears as a bifurcation in the model dynamics. If the obstacle is
between the agent and the goal, the model is bistable such that both outside and
inside heading directions are attractive; the branch selected depends on the
agent’s initial conditions. As the agent moves around the obstacle, the model ex-
hibits a tangent bifurcation, and only one route remains stable. Route selection can
thus be understood as a consequence of bifurcations in the system’s dynamics.

One advantage of the model is that it scales linearly with the complexity of the
scene, simply adding one term for each object. A strong test of this is predicting
route selection with large configurations of obstacles (Warren, Fajen, & Belcher,
2001). The model did a reasonable job of reproducing human paths through ran-
dom arrays of 12 obstacles (e.g., Figure 6). On half of the eight arrays, the model
was identical to the most frequent human route; on two arrays, they differed by
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FIGURE 3 Model simulations of walking to a goal at 2, 4, and 8 m. (a) Paths with an initial goal
angle of 20°. (b) Time series of goal angle with initial values of ±10° or 20°. s = seconds. From
“Behavioral Dynamics of Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen
and W. H. Warren, 2003, Journal of Experimental Psychology: Human Perception and Performance,
29, pp. 343–362. Copyright 2003 by the American Psychological Association. Reprinted with
permission.



only 1 obstacle; and on one array each, they differed by 2 and 4 obstacles. Of
course, there was some variability in human routes across trials and individuals due
to the number of bifurcation points in such a configuration that could send the par-
ticipant down different paths. We have recently found that the distribution of hu-
man paths can be approximated by adding Gaussian noise to the initial values of
the model parameters and perceptual variables.
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FIGURE 5 Model simulations of obstacle avoidance with an initial distance of 3, 4, or 5 m and
obstacle angle of –4°. (a) Paths. (b) Time series of obstacle angle. s = seconds. From “Behavioral
Dynamics of Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen and W. H.
Warren, 2003, Journal of Experimental Psychology: Human Perception and Performance, 29, pp.
343–362. Copyright 2003 by the American Psychological Association. Reprinted with permission.

FIGURE 4 Obstacle avoidance with an initial distance of 3, 4, or 5 m and obstacle angle of –4°.
(a) Mean paths. (b) Mean time series of obstacle angle. s = seconds. From “Behavioral Dynamics
of Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen and W. H. Warren, 2003,
Journal of Experimental Psychology: Human Perception and Performance, 29, pp. 343–362. Copy-
right 2003 by the American Psychological Association. Reprinted with permission.



In sum, human route selection can be understood as a form of emergent behav-
ior, which unfolds as an agent with certain steering dynamics interacts with a struc-
tured environment, making explicit path planning unnecessary. The ultimate aim
of this research program is to characterize the behavioral dynamics of locomotion
in a complex dynamic environment. We plan to model steering to stationary and
moving goals (Fajen & Warren, in press) and avoidance of stationary and moving
obstacles. Once these basic locomotor “rules” for an individual agent are under-
stood, we can model interactions among multiple agents such as pedestrian traffic
flow and crowd behavior in particular environments. Locomotion thus offers a
comparatively simple model system for understanding how adaptive human behav-
ior emerges from information and dynamics.
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FIGURE 6 Routes to a goal (X) through an array of 12 obstacles (O) for 2 participants (S2 and
S5). Dotted curves represent 6 trials from each participant; solid curves represent the model sim-
ulation. Starting point is at (0,0).


